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Abstract
We analyse a system of self-gravitating identical bosons by means of a
semirelativistic Hamiltonian comprising the relativistic kinetic energies of
the involved particles and added (instantaneous) Newtonian gravitational pair
potentials. With the help of an improved lower bound to the bottom of the
spectrum of this Hamiltonian, we are able to enlarge the known region for
relativistic stability for such boson systems against gravitational collapse and
to sharpen the predictions for their maximum stable mass.

PACS numbers: 03.65.Ge, 03.65.Pm

1. Introduction

In this paper we study the implications of two aspects of relativistic bound systems: the
Coulomb (or gravitational) one-body coupling limit, and the effective coupling enhancement
induced in a system of many identical particles interacting pairwise. These two effects lead to
the conclusion that a system of N identical particles interacting by attractive 1/r pair potentials
becomes unstable if N is very large. Our principal goal is to sharpen previous bounds on the
critical mass of such a system.

Relativistic quantum-mechanical theories imply an upper limit on the strength of the
coupling of a single particle bound by an attractive Coulomb potential. Thus for a hydrogen-
like one-particle system with mass m, and units such that h̄ = c = 1, the upper limits to
the allowed coupling v in the potential −v/r are, respectively, v < 1 for the Dirac equation
and v < 1

2 for the Klein–Gordon equation. Meanwhile, for the semirelativistic Salpeter

equation [1–3] with Hamiltonian h =
√

p2 + m2 − v/r, Herbst [4] showed that for v < 2/π
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Figure 1. Ground-state energies E (in dimensionless units) for the potential V (r) = −v/r

according to the Schrödinger, Salpeter and Klein–Gordon theories. The Salpeter curve is a
variational upper bound.

the spectrum of h in [0,m) is discrete and, moreover, he found an explicit lower bound. In
summary

h =
√

p2 + m2 − v/r > m
√

1 − (πv/2)2, v <
2

π
. (1)

Under the Schrödinger equation, with one or more particles, there is no such coupling
restriction; thus the existence of such a coupling limit is essentially a relativistic phenomenon.
The Salpeter Hamiltonian has eigenvalues that lie between the corresponding Schrödinger and
Klein–Gordon energies. Thus, in addition to exhibiting the relativistic coupling limit, within
the allowed couplings, the Salpeter energies are intermediate between those of Schrödinger
and Klein–Gordon. For example, for the one-body problem with mass m = 1 and the potential
V (r) = −v/r, the three theories have ground-state eigenvalues that depend on the coupling
v as shown in figure 1. The Salpeter result was obtained by the use of a scale-optimized trial
function with coordinate expression φ(r) = c e−r/a; it is known analytically that the exact
Salpeter curve is bounded below by the Klein–Gordon results for v < 1

2 . A brief review of
aspects of Salpeter semirelativistic theory may be found in [5]. If we consider, as we do in
this paper, a system of N identical particles interacting pairwise via attractive potentials of
the form −v/rij , then the necessary permutation symmetry of the wavefunction effectively
enhances the pairwise coupling by a factor of the order of N. This effect, which we shall soon
make clear, is most pronounced in the case of bosons.

Particle identity in quantum mechanics is so strong that, in a system of identical particles,
the particles lose their individuality; they cannot be separately tracked. This is often helpful for
many-particle theory since, when it comes to permutation symmetry, at most two of the many
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possible Young tableaux need be considered; moreover, many quantities are necessarily equal
on the average. We shall now make clear the notion of effective many-body enhancement
of the pair couplings which we alluded to above. We do this in the context of the problem
that is the main concern of the paper. One of the advantages of the Salpeter semirelativistic
theory is that it accommodates a straightforward formulation of the many-body problem. We
consider therefore a semirelativistic system of N self-gravitating identical bosons of mass m
and momenta pi , i = 1, 2, . . . , N. This can be described—in a Newtonian approximation,
justified to some extent by the assumption of a weak gravitational field—by the Hamiltonian

H =
N∑

i=1

√
p2

i + m2 −
N∑

1=i<j

κ

rij

, κ > 0, (2)

where, in the Newtonian pair potential, the gravitational interaction strength (determined
by the gravitational constant G and the particle mass m) has been encoded in the coupling
parameter κ := Gm2. The pair distance between the interacting particles i and j is given
by rij ≡ |xi − xj |. If we consider expectations with respect to a normalized boson function
�, then we immediately find that there is a relation between H and a scaled two-particle
Hamiltonian, namely, 〈H 〉 = 〈H2〉, where

H2 := N

2

[√
p2

1 + m2 +
√

p2
2 + m2 − (N − 1)

κ

r12

]
. (3)

This expectation equality arises because the necessary boson permutation symmetry of the
exact N-body ground state � implies that the expectations of the N kinetic-energy terms in H
are the same; and similarly for the 1

2N(N − 1) pair-potential terms. For convenience we have
collected these into N/2 times a two-body Hamiltonian; we have included the overall N/2
factor and written this scaled two-body Hamiltonian as H2. Thus with respect to the exact
wavefunction � we may write E = 〈H 〉 = 〈H2〉, where E is the corresponding exact energy.
If we denote by E2 the bottom of the spectrum of the two-boson problem with Hamiltonian
H2, then, since boson symmetry in only two particles is in general a weaker constraint than
symmetry in all N particles, it follows that E � E2. Indeed, the dependence of � on the
variables {x3, . . . , xN } that are not present in H2 cannot cause 〈H2〉 to fall below the bottom of
the spectrum of H2. Thus E2 provides a lower energy bound to E. We shall sometimes express
this as the operator inequality H � H2. A corresponding upper bound Eg may be found
with the aid say of a normalized Gaussian trial function �g: thus E � Eg = (�g,H�g).

These energy bounds allow us to compute bounds on the critical mass Mc, the largest allowed
mass for such a bound system. In order to make this point clear and to fix ideas, we shall
now compute an explicit energy lower bound and from this a lower estimate to Mc. We first
have to solve the two-body problem represented by H2. If we consider for this problem new
coordinates R = x1 + x2, and r = x1 − x2, then the corresponding momenta are related by
p1 = p + P and p2 = p − P. If we introduce a vector k which is orthogonal to p and P, then
we may consider the following application of the triangle inequality:

2(p2 + m2)
1
2 = |2p + 2mk|

= |p + P + mk + p − P + mk|
� |p1 + mk| + |p2 + mk|.

From this inequality and (3) we conclude the following inequalities

H � H2 � N

[√
p2 + m2 − (N − 1)κ

2r

]
.

3
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Consequently, from (1), we have

E � Nm

[
1 −

(
(N − 1)κπ

4

)2
]

> Nm

[
1 −

(
Nκπ

4

)2
]

.

We have replaced N −1 by N merely for analytical convenience. Thus we obtain the following
N-boson lower energy bound

E � 4m

πκ
t(1 − t2)

1
2 , t := Nκπ

4
� 1. (4)

It turns out that if we maximize the right-hand side of (4) with respect to N, that is to say,
with respect to the parameter t, the critical value of t is t̂ = 1/

√
2, so that the Herbst coupling

inequality is satisfied at the optimal point. Since mass and energy are identified in our units,
and κ = Gm2, we arrive at the bound Mc > (2/π)/Gm ≈ 0.636 62/Gm. This detailed
calculation shows how an energy bound leads to an estimate for the critical mass Mc. The
principal goal of the paper is to refine such estimates. Thus we have here an explicit example
of the phenomenon under discussion: if m is the mass of an alpha particle, say, then M cannot
be larger than the mass of a modest mountain (we shall present an upper bound to Mc shortly).
No such possibility arises from the corresponding nonrelativistic theory.

2. Reduction: ‘equivalent’ two-body problems

The question of the implications of the necessary permutation symmetry of the states for
systems composed of many identical particles is almost as old as quantum mechanics. There
are a number of historical threads. Before going into the technical details of our problem, we
shall briefly mention two of these. The reasoning leading to the two-particle Hamiltonian H2

suggests that the energy depends on a reduced density matrix ρ(x1, x2, x′
1, x′

2) obtained by
integrating

�(x1, x2, x3, . . . , xN)�(x′
1, x′

2, x3, . . . , xN)

over all the variables xi with i > 2. A question raised by this is, what are the necessary features
of ρ which characterize it as having come from an N-boson function �? This is called the
N-representability problem and goes back at least to the early papers of Löwdin [6] and
Coleman [7]: a summary of early work in this direction can be found in the introductory
chapters of [8] by Coleman and Rosina. Much of the early work was concerned with atomic
and chemical systems. Density-matrix many-body theory and the N-representability problem
are still active areas of research [9–11]. We note that, as in the previous paragraph, one
can derive energy lower bounds without attempting to solve the N-representability problem
generally.

Another story concerns nuclear-type systems, where all the particles enter the motion on
an equal footing, and considerations of centre-of-mass motion become important. In order to
make this point more explicit, the example of the harmonic oscillator is helpful. We consider
briefly the nonrelativistic Hamiltonian given by

HHO =
N∑

i=0

p2
i

2m
+

N∑
1=i<j

vr2
ij . (5)

The earliest treatment we know of for this problem is by Houston [12] in 1935; a solution
expressed more specifically useful for our purposes was found in 1953 by Post [13]; the
solubility of the N-body harmonic-oscillator problem is periodically rediscovered, with
justifiable fresh enthusiasm. In units with h̄ = 1 the bottom of the spectrum is given exactly
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by the expression EHO = 3(N − 1)
√

Nv/(2m). The exact ground-state wavefunction is a
Gaussian in the N −1 orthogonal relative coordinates. If the same reasoning we used to derive
the semirelativistic operator bound H � H2 above is now applied to HHO, the resulting lower
energy bound obtained is exactly given by EL = EHO/

√
2. If, instead, the ‘reduction’ (to a

two-body problem) is effected with Jacobi relative coordinates, one obtains a lower bound for
the harmonic oscillator equal to EHO itself. This type of reduction has its own history. It is
only possible to indicate a few key events of this story in the present short paper. In 1933,
just after the discovery of the neutron, physicists began to look at few-nucleon problems. An
approach emerged called the ‘equivalent two-body method’. It was initiated by Wigner [14]
and employed by many researchers [15–20] and eventually found its way into the pages of
Rosenfeld’s book Nuclear Forces [21] in 1948. The idea was always the same, to replace
the N-body problem by a tractable two-body problem. In many instances the result yielded
an energy lower bound, but this was unknown to the workers at the time. The first rigorous
results for such problems came in 1956 when Post [22] used Jacobi relative coordinates to
show that indeed a lower bound could be constructed. In 1962 Post [23] applied this bound
to the gravitational problem with pair potentials of the form −v/rij ; together with a Gaussian
trial function, the energy was determined to 18%. Rigorous energy bounds with the aid of
Jacobi coordinates, and a discussion of the ‘equivalent two-body method’ may be found in a
paper by Hall and Post [24] in 1967. Some similar lower-bound results were later obtained by
Levy-Leblond [25] and Stenschke [26]. An independent review and a certain sharpening of
results by Hill may be found in [27]. The two streams of activity intersected in a paper by Hall
[28] who used a similar argument to that of Coleman [7] to obtain a lower bound for a fermion
system in the centre-of-mass frame in terms of a sum over N −1 reduced two-particle energies;
the bound was also optimized over a certain set of allowed non-orthogonal relative coordinates.
Later this lower-bound theory (with non-orthogonal relative coordinates) was extended to the
excited states [29]. A variety of alternative lower-bound models and approaches have been
developed, for example by Carr [30], Manning [31] and Balbutsev [32]. The nonrelativistic
lower bound for the ground-state energy is rediscovered from time to time, for example by
Membrado et al [33] and Basdevant et al [34].

3. Semirelativistic gravitating bosons

We must now return to our main problem, the application of these ideas to a semirelativistic
many-body system. The complication that the permutation symmetry (in its spatial aspect)
is expressed in the individual-particle coordinates whereas the wavefunction is expressed in
relative coordinates remains, and is adjoined by a new difficulty, namely the non-locality of
the semirelativistic kinetic-energy operator. Here the N-body harmonic-oscillator problem is
now no longer solved exactly by the lower bound, but with a finite error less than 0.15% [35].

The Hamiltonian H, among others, has been adopted to investigate spherically symmetric
and nonrotating configurations of purely gravitationally interacting bosons forming compact
objects known as ‘boson stars’ [36–40]. This operator H is composed of the relativistically
correct expression for the kinetic energy of all the involved bosons and static potentials κ/rij

which describe the gravitational forces between these particles. Therefore, it is clearly not
possible in this model to take into account retardation effects. In addition, it goes without
saying that this approach also omits general-relativistic effects [41–43]. Sufficient conditions
have been found both for relativistic stability, which is characterized by the existence of a
lower bound on the Hamiltonian H of (2), and for relativistic gravitational collapse, which is
inevitable if H is not bounded below. Moreover, semirelativistic bounds have been derived
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for the maximum possible, or critical, mass Mc of boson stars, that is, the mass beyond which
there must be relativistic collapse.

The results of particular interest for this analysis can be summarized as follows. The
relativistic kinetic energy

√
p2 + m2 satisfies [36] a (tangential [44]) operator inequality,

involving an arbitrary real parameter µ with the dimension of mass:

√
p2 + m2 � p2 + m2 + µ2

2µ
∀ µ > 0.

This inequality can be adopted to relate the semirelativistic Hamiltonian H, equation (2),
to its nonrelativistic counterpart. A variational bound on the ground-state energy
of the nonrelativistic N-particle problem therefore translates into the upper bound
Mc < 1.52/Gm [37]. Exploiting the (only numerically computed) nonrelativistic ground-state
energy, this bound is refined to Mc < 1.518/Gm [39]. Rewriting H as a sum of one-particle
Hamiltonians, each of which is bounded from below by the lowest positive eigenvalue of the
Klein–Gordon Schrödinger equation with Coulomb potential, yields a bound3 to the bottom
E of the spectrum of H [38]:

E � Nm

√
1 +

√
1 − (N − 1)2κ2

2
, (N − 1)κ < 1. (6)

The replacement of N − 1 under the square root by N slightly weakens this bound but allows
for its analytic maximization, which entails the analytic lower bound [38]

Mc � 4

3
√

3Gm
� 0.7698

Gm
.

Together these estimates constrain Mc to the range 0.7698 < GmMc < 1.518. The resulting
ratio of upper to lower bounds on Mc is rU/L � 2.0. The so-called local-energy theorem may
be used to increase the lower bound, whereas a more sophisticated choice of trial functions
diminishes the variational upper bound. The combined effect of these improvements is to
narrow down the range for Mc to 0.8468 < GmMc < 1.439, with upper- to lower-bound ratio
of rU/L � 1.7 [40].

We have re-analysed the upper bound of [40] with positive non-monotone Hartree
wavefunction factors φ(r). With the factor (before scale optimization) φ(r) = c e−r (1 +
ar), a > 0, we confirm the findings [40] that the best value of a is about a � 1, which yields
GmMc < 1.438 71 ≈ 1.439. This φ does indeed seem to be close to the best possible Hartree
factor. With a = 1.13, we get a slight improvement, namely, GmMc < 1.438 54. With the
factor φ(r) = c e−r (1 − b e−r ) we obtain our best result, namely, GmMc < 1.43764 for
b = 0.625. Thus we have been able to lower the upper bound on the critical mass slightly to
Mc < 1.438/Gm.

In this paper we tighten the interval allowed for the critical mass of boson stars, by
employing an improved analytic lower bound [45] on the ground-state energy of the N-particle
Hamiltonian (2) for semirelativistic self-gravitating N-boson systems, to a range characterized
by an upper- to lower-bound ratio rU/L � 1.3. The region of validity of a lower bound on the
Hamiltonian H defines the range of relativistic stability of the gravitating N-particle system
under study [38]: our improved lower energy bound discussed below increases somewhat the
stability region obtained in [38]; for instance, for couplings κ 	 1—which allows for large
N—this increase of the stability range amounts to an 11% improvement.

3 [45] discusses this simple ‘N/2 lower energy bound’ for arbitrary potentials.
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4. Lower bound for self-gravitating semirelativistic N-boson systems

Let |�〉, 〈�|�〉 = 1, represent the normalized ground state of H, corresponding to its lowest
eigenvalue E ≡ 〈�|H |�〉. Now, the bosonic nature of the identical bound-state constituents
forces the eigenstates of H (i.e., their wavefunctions) to be totally symmetric under any
permutation of the individual-particle coordinates {x1, x2, . . . , xN }. The boson permutation
symmetry of |�〉 reduces the N-body problem posed by the Hamiltonian H to a constrained
two-particle problem [35]:

E = 〈�|N
√

p2
N + m2 − γ κ

rN−1,N

|�〉, γ ≡ N(N − 1)

2
. (7)

By use of permutation symmetry, equation (7) may be cast into the equivalent form

E = 〈�|N
2

(√
p2

1 + m2 +
√

p2
2 + m2

) − γ κ

r12
|�〉. (8)

After removal of the center-of-mass momentum from p1 and p2, this apparent two-particle
problem reduces to a one-body problem in the relative coordinate and momentum of the
particles 1, 2 for which the Klein–Gordon equation with Coulomb interaction gives a lower
bound: this eventually yields the bound (6).

The lower bound (6), however, is dramatically improved [45] by the use of Jacobi relative
coordinates. The transformation from a given set {xi , i = 1, 2, . . . , N} of coordinates to
another set {ρk, k = 1, 2, . . . , N} may be defined by a matrix B = (Bki): ρ = Bx. The
orthogonality B−1 = BT of B is not mandatory but may prove to be convenient. The momenta
{πi} conjugate to the {ρi} are then also determined by π = (B−1)Tp = Bp. The transformation
to Jacobi relative coordinates is represented by an orthogonal matrix with the first row given
by

B1i = 1√
N

∀ i = 1, 2, . . . , N,

whereas, for all 2 � k � N, in the kth row only the first k entries are nonzero:

Bki = 1√
k(k − 1)

∀ i = 1, 2, . . . , k − 1, Bkk = −
√

k − 1

k
,

Bki = 0 ∀ i = k + 1, k + 2, . . . , N.

Evidently, by the definition of B its first row generates the usual center-of-mass variable ρ1,

while its second row introduces a pair distance ρ2 = (x1 − x2)/
√

2.

Any boson state |�〉 is symmetric under permutations of all individual-particle
coordinates. However, a non-Gaussian boson state is not necessarily symmetric in the Jacobi
relative coordinates. Nevertheless, as has been shown in appendix A of [45], each such |�〉
satisfies, for all i, k � 2, the N-representability identities

〈�|ρi · ρk|�〉 = δik〈�|ρ2
2|�〉, 〈�|πi · πk|�〉 = δik〈�|π2

2|�〉. (9)

Now, for the sake of notational simplicity, let us introduce some abbreviations:

λ ≡ N − 1

N
, a ≡ 1√

λ
=

√
N

N − 1
, b ≡

√
N − 2

N − 1
, c ≡ b

a
=

√
N − 2

N
.

These parameters λ, a, b, c are, of course, related by a2 + b2 = 2 and 1 + c2 = 2λ. In terms
of Jacobi relative coordinates, the expectation value (7) then becomes

E = 〈�|N
√

(aπ1 −
√

λπN)2 + m2 − γ κ

|aρN − bρN−1|
|�〉.

7
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We assume that the eigenstate |�〉 depends on {ρ2, ρ3, . . . , ρN } but not on ρ1. A lemma shown
in [46] allows us to remove the center-of-mass momentum π1 from the kinetic term. Thus the
N-body ground-state energy E simplifies to

E = 〈�|N
√

λπ2
N + m2 − γ κ

|aρN − bρN−1|
|�〉. (10)

Focusing on the (N − 1, N) subsystem we introduce new coordinates {R, r} and their
conjugate momenta {P, p}, by performing the coordinate transformation(

R
r

)
= O

(
ρN

ρN−1

)
,

(
P
p

)
= O

2

(
πN

πN−1

)
.

The expectation value (10) suggests the most favourable choice of the matrix O:

O ≡
(

b a

a −b

)
= OT, OTO = O2 = 2.

Upon this change of variables, the ground-state energy E of the Hamiltonian H is given by the
expectation value E = 〈�|H|�〉 of the two-particle Hamiltonian

H ≡ N
√

(p + cP)2 + m2 − γ κ

r
, r ≡ |r|.

It may be proved that H is bounded from below by the Hamiltonian entering in the expectation
value on the right-hand side of equation (8) (see appendix B of [45]).

For the new momenta P and p, the identities (9) translate into the constraints

〈�|P2|�〉 = 〈�|p2|�〉 and 〈�|P · p|�〉 = 0.

Consequently, we have to look for the bottom of the spectrum of the constrained problem
posed by the operator H in a domain D restricted by these conditions:

D = {|ϕ〉 ∈ L2(�6) : 〈ϕ|P2|ϕ〉 = 〈ϕ|p2|ϕ〉, 〈ϕ|P · p|ϕ〉 = 0}.
This bottom E of the spectrum of H, of course, provides a lower bound to E:

E = 〈�|H|�〉 � inf
|ϕ〉∈D

〈ϕ|ϕ〉=1

〈ϕ|H|ϕ〉 ≡ E .

Let |ψ〉 ∈ D, 〈ψ |ψ〉 = 1, be the eigenstate of the Hamiltonian H corresponding to this
lowest eigenvalue E . The eigenvalue equation of H satisfied by |ψ〉 reads

N
√

(p + cP)2 + m2|ψ〉 =
(
E +

γ κ

r

)
|ψ〉.

By squaring this relation and remembering the constraints that define D we get

E2 − N2m2 = 4γ 〈ψ |p2 − κE
2r

− γ κ2

4r2
|ψ〉. (11)

Now, by assumption, |ψ〉 is the lowest eigenstate of H but not necessarily of the one-particle
Kratzer-type [47] operator in equation (11). According to the variational principle, the (well-
known) lowest eigenvalue of this Kratzer-type Hamiltonian provides a lower bound on the
expectation value in equation (11). Solving the implicit inequality for E yields a lower bound
to E, and thus to E [45]; this lower bound is nothing but the lowest positive eigenvalue of
the corresponding Klein–Gordon Schrödinger equation [48] for gravitational interaction of
appropriate strength:

E � Nm

√
1 +

√
1 − γ κ2

2
, γ κ2 < 1. (12)

Our improved lower bound (12) on the ground-state energy of any self-gravitating N-boson
system is of the same form as the bound (6) but with γ ≡ N(N − 1)/2 replacing (N − 1)2,

which is favourable since N(N − 1)/2 < (N − 1)2 for N > 2.

8
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5. Semirelativistic stability and critical mass of boson stars

Let us now analyse the implications of the improved lower energy bound (12) for both stability
against gravitational collapse and maximum mass of boson stars.

The existence of a lower bound on the spectrum of the Hamiltonian operator H guarantees
the stability of the self-gravitating boson system against relativistic gravitational collapse.
The region of validity of such kind of lower energy bound delimits the stability range of
the bound state described by H. By construction, our bound (12) holds for all N satisfying
N(N − 1)κ2 < 2. This stability region is larger than the one, (N − 1)κ < 4/π, found in
[38]. For large values of N, allowed for sufficiently small couplings κ, this gain amounts
to π/2

√
2 = 1.11. In terms of Newton’s constant G and the particle mass m, a sufficient

condition for relativistic stability thus is that the particle number N fulfils the constraint

N(N − 1) <
2

(Gm2)2
.

Following [38], in order to allow for a discussion by elementary methods, we weaken
equation (12) by replacing the exact N dependence γ ≡ N(N − 1)/2 by N2/2:

E � Nm

√
1 +

√
1 − N2κ2/2

2
, Nκ <

√
2.

Evidently, even this weakened lower bound is still above the lower bound (6) for all
N > 2 +

√
2 � 3.41; for large N, the weaker bound approaches the exact one. The (single)

maximum of this weakened lower bound is situated at the critical point N̂ = 4/3κ, which is,
fortunately, in the interior of the region of validity of our lower bound (12) on the Hamiltonian
H as N̂ <

√
2/κ. This maximum thus constitutes the (improved) lower bound on the critical

mass Mc of boson stars

Mc � 4
√

2m

3
√

3κ
= 4

√
2

3
√

3Gm
= 1.088 66

Gm
. (13)

This lower Mc bound is larger by exactly a factor
√

2 than the result of [38]. Combining the
lower bound (13) with the Rayleigh–Ritz upper bound of [40] tightens the (Newtonian-limit)
prediction for Mc to 1.088 66 < GmMc < 1.439, reducing thus the ratio between upper and
lower bounds on Mc to rU/L � 1.3.

In summary, with the aid of an improved lower bound [45] (based on the relative
coordinates of the bound-state constituents) on the bottom of the spectrum of the
semirelativistic N-boson Hamiltonian (2) with gravitational interaction we have succeeded
in enlarging the range of semirelativistic stability of boson stars and in halving the theoretical
uncertainty in the maximum mass of boson stars.
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[35] Hall R L, Lucha W and Schöberl F F 2004 J. Math. Phys. 45 3086 (Preprint math-ph/0405025)
[36] Martin A 1988 Phys. Lett. B 214 561
[37] Basdevant J L, Martin A and Richard J M 1990 Nucl. Phys. B 343 60
[38] Martin A and Roy S M 1989 Phys. Lett. B 233 407
[39] Jetzer Ph 1992 Phys. Rep. 220 163
[40] Raynal J C, Roy S M, Singh V, Martin A and Stubbe J 1994 Phys. Lett. B 320 105
[41] Ruffini R and Bonazzola S 1969 Phys. Rev. 187 1767
[42] Friedberg R, Lee T D and Pang Y 1987 Phys. Rev. D 35 3640
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